Polymer Crystallization and Precipitation-Induced Wrapping of Carbon Nanofibers with PBT
نویسندگان
چکیده
Carbon nanofibers (CNFs) have attracted significant interest because of their excellent mechanical, electrical, and physical properties. Recent advances in chemical functionalization strategies are anticipated to extend their utility in various applications. In this study, noncovalent methods of CNF functionalization utilizing solution crystallization and precipitation techniques were used to create hybrid nanostructures consisting of CNFs and poly(butylene terephthalate) (PBT). Key to this study is the finding that o-chlorophenol can be used as a suitable solvent to dissolve PBT to generate these nanostructures. PBT crystallization was documented via wideangle X-ray analysis and differential scanning calorimetry and was due to the nucleation effect of the CNFs. The sizes of the PBT crystals could be manipulated by altering the polymer concentration. The solution crystallization and precipitation techniques provide an alternative strategy to alter and control the nanostructure/polymer interface. The resulting nanohybrid structures may potentially find use in a broad range of applications including electronic devices, sensors, and as reinforcing agents in a polymer matrix. VC 2009 Wiley Periodicals, Inc. J Appl Polym Sci 114: 1312–1319, 2009
منابع مشابه
Effects of Multiwalled Carbon Nanotubes on the Shear-Induced Crystallization Behavior of Poly(butylene terephthalate)
The effects of the incorporation of multiwalled carbon nanotubes (MWNT) with a diameter range of 10-30 nm on the shear-induced crystallization behavior of poly(butylene terephthalate) (PBT) were investigated under myriad shearing and loading conditions employing principally the small-amplitude oscillatory shear flow. Upon shearing, the presence of MWNTs leads to the crystallization of the PBT n...
متن کاملEffect of Functionalization on the Crystallization Behavior of MWNT-PBT Nanocomposites
There is tremendous interest in using low loadings of multiwalled carbon nanotubes (MWNTs) to enhance the multifunctional properties of polymers, with functionalization often pursued to increase the dispersion and effective reinforcement of MWNTs within the polymer. In our interest to understand the effect of MWNT functionalization on Poly (butylene terephthalate) (PBT) crystallization kinetics...
متن کاملComparative Studies on Thermal, Mechanical, and Flame Retardant Properties of PBT Nanocomposites via Different Oxidation State Phosphorus-Containing Agents Modified Amino-CNTs
High-performance poly(1,4-butylene terephthalate) (PBT) nanocomposites have been developed via the consideration of phosphorus-containing agents and amino-carbon nanotube (A-CNT). One-pot functionalization method has been adopted to prepare functionalized CNTs via the reaction between A-CNT and different oxidation state phosphorus-containing agents, including chlorodiphenylphosphine (DPP-Cl), d...
متن کاملPreparation and Properties of Polycaprolactone/Poly (Butylene Terephthalate) Blend
Polycaprolactone (PCL) and poly(butylene terephthalate) (PBT) blend was prepared by melt processing. The PCL/PBT blend showed similar morphology with that of pure PCL.The crystallization temperature of PCL was increased by the incorporation of PBT. It was also observed that the peak height in the DSC thermograms decreased and then disappeared by adding 40 % or more PBT which might be due to...
متن کاملCatalytically Graphitized Electrospun Carbon Nanofibers Adorned with Nickel Nanoparticles for Catalysis Applications
Catalytically graphitized electrospun carbon nanofibers adorned uniformly with fine nickel nanoparticles were successfully prepared. The procedure was based on the electrospinning technique and the use of nickel precursor to create both graphitized nanofibers and nickel nanoparticles under a relatively low-temperature heat treatment. The X-ray diffraction and Raman results clearly proved cataly...
متن کامل